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• Medium alluvial Po Plain

• Surface area ≈ 460 km2

• Three main groundwater bodies (A-B-C)

• Groundwater resources intensively 
exploited for urban supply
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exploited for urban supply



Lithological data

Least-conductive facies

Most-conductive facies

Lithological data from 1303 boreholes
allowed to identify 4 main categories:

Clay 52%

Gravel 28%

Silt 13%

Sand 7%



Outline of the work

• Apply 2 geostatistical reconstruction methods to
describe the architecture of the aquifer system,
on the basis of lithological data

• Evaluate possible impacts of the reconstruction
method on the connectivity of lithological facies

• Develop a 3D groundwater flow model

• Evaluate possible impacts of the reconstruction
method on model outputs



Reconstruction methods

Sequential Indicator Simulation (SISIM)

Transitional Probability Simulation (T-PROGS)
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2. Sample (directional) variograms based on data 

Reconstruction methods: SISIM
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ො𝛾 ℎ = 𝑐0 + 𝜎2[1 − exp( Τℎ 𝑎)]
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3. Best-fitting variogram model for each k

Reconstruction methods: SISIM

2. Sample (directional) variograms based on data 

1. Discrete variable Indicator function

Sequential Indicator Simulation (SISIM)
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1. Transition probability:

Transitional Probability Simulation (T-PROGS)

Reconstruction methods: T-PROGS
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2. Sample (directional) transiograms based
on data

Transitional Probability Simulation (T-PROGS)
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Reconstruction methods: T-PROGS

1. Transition probability:
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2. Sample (directional) transiograms based
on data

3. Best-fitting Markov-chain model

Transitional Probability Simulation (T-PROGS)

Reconstruction methods: T-PROGS
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SISIM

T-PROGS

Reconstruction methods: results

Facies 

proportions
Dataset

Generated 

fields
SISIM T-PROGS

mean 0.543 0.523

std 5×10-3 2×10-5

mean 0.267 0.281

std 6×10-3 2×10-5

mean 0.118 0.133

std 1×10-3 1×10-5

mean 0.071 0.063

std 5×10-3 2×10-5
Sand 0.063

Clay 0.523

Gravel 0.281

Silt 0.133



SISIM simulations show more
fragmented facies distributions
compared to T-PROGS

SISIM

T-PROGS

Reconstruction methods: results

Facies 

proportions
Dataset

Generated 

fields
SISIM T-PROGS

mean 0.543 0.523

std 5×10-3 2×10-5

mean 0.267 0.281

std 6×10-3 2×10-5

mean 0.118 0.133

std 1×10-3 1×10-5

mean 0.071 0.063

std 5×10-3 2×10-5
Sand 0.063

Clay 0.523

Gravel 0.281

Silt 0.133



Analysis of facies connectivity

Connectivity indices 

Number of clusters: NC = 5



Analysis of facies connectivity

Connectivity indices 

Max cluster size: Cmax = 10

Number of clusters: NC = 5



Analysis of facies connectivity

Connectivity indices 

Number of isolated cells: NI = 2

Max cluster size: Cmax = 10

Number of clusters: NC = 5



Analysis of facies connectivity



Analysis of facies connectivity

Connectivity function:
i = 1, …, 4 and j = x, y, z

SISIM T-PROGS



Steady-state three-dimensional
groundwater flow model
(MODFLOW-2005).

Natural recharge: land-use
dependent (18% of the rainfall)

Groundwater flow model



Active pumping wells

Recharge TotalWellsConstant 
Heads

Discharge 
(105 m3/d)

1-

2-

Inflow
Outflow

Groundwater withdrawal data of 2011: for
civil (78%), industrial (18%) and agricultural
(4%) purposes.

Groundwater balance

Groundwater flow model



Head observations

Hydraulic head data of 2011 used for the
calibration of 2 hydraulic conductivity values

Parameter Type Value range

KCLAY [m/s] Adjustable 10-9 ÷10-6

KGRAVEL [m/s] Adjustable 10-4 ÷10-2

KSILT [m/s] Fixed 10-6

KSAND [m/s] Fixed 10-5

Groundwater flow model



San Vitale

Tiro a segno

Borgo Panigale

Head contours Facies distribution

Groundwater flow model outputs

Clay
Gravel
Silt
Sand



i-th realization

KCLAY

[m/s]

Maximum Likelihood approach: minimization of NLL

Model calibration results



Maximum Likelihood approach: minimization of NLL

i-th realization

KGRAVEL

[m/s]

In SISIM, lower facies
connectivity is compensated by
larger estimates of KGRAVEL

compared to T-PROGS

Model calibration results



Maximum-Likelihood Bayesian Model Averaging

Maximum Likelihood approach: minimization of NLL 

Diverse realizations = Competing models of the aquifer

1. Rank realizations based on model identification criteria:

2. Assign to hydraulic head model predictions a ML-based weight:
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Model-averaged heads vs observed heads:   

Maximum-Likelihood Bayesian Model Averaging

Uniform weights Maximum Likelihood-based
weights



Maximum-Likelihood Bayesian Model Averaging

SISIM T-PROGS

Averaged model performance:



Clay has similar degree of connectivity in the two ensembles and similar
results in terms of calibrated conductivities

To compensate for the lower degree of connectivity, gravel hydraulic
conductivity estimates obtained in the SISIM realizations are generally larger
than their T-PROGS counterparts.

The best individual model (i.e., the realization minimizing KIC) as well as the
average model obtained via MLBMA in the T-PROGS set are more skillful than
their counterparts obtained for the SISIM set.

Concluding remarks


