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Arsenic around the World

WHO reference threshold : 10 μg/L 

Aim: To identify Arsenic sources and control the contamination is one of the most 

important modern challenges. 

140 million people are exposed to arsenic contamination

Forms of arsenic in groundwater: As(III) and As(V) are toxic



WHO reference threshold : 10 μg/L 

 Hydrothermal Fluids

e.g., New Zealand

New Zealand Hydrothermal waters: 8500 μg/L

Robinson et al. (2006)

Origin of Arsenic around the World



WHO reference threshold : 10 μg/L 

 Anthropic Contamination

e.g., Greece

Greek groundwater: 250 μg/L

Mukherjee et al. (2006)

 Hydrothermal Fluids

e.g., New Zealand

Origin of Arsenic around the World
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WHO reference threshold : 10 μg/L 

Bangladesh groundwater: >200 μg/L

Hossain et al. (2015)

Bengala Bay

Occurrence of specific conditions that mobilize arsenic through geochemical processes.

 Geochemical Mobilization

e.g., Bengala Basin

 Anthropic Contamination

e.g., Greece

 Hydrothermal Fluids

e.g., New Zealand

Origin of Arsenic around the World
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Geochemical Mobilization of Arsenic

Oxidation of Pyrites Reductive Dissolution of Iron-oxides

Dissolution of Arseno-sulphides Ion Exchange / Arsenic Desorption
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Geochemical Mobilization of Arsenic

Each site is UNIQUE and 

identifying the source of arsenic is 

markedly challenging

• Many diverse type of mechanisms 

• Any value of pH and Redox 

Potential

• Sources and sinks

• Both As(III) and As(V) are toxic, 

mobile and reactive

• Unevenly distributed
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Interpretation of geochemical 

data available

Select a compatible source 

mechanisms

The Project Planning

Gan et al. 2014; Duan et al., 2017; Nickson et al., 2000, McArthur et al., 2001; 
Angelone et al., 2008; Armienta et al., 2001; Bondu et al., 2018; Bundschuh et 
al., 2004; Hafeznezami et al., 2016; Jia et al., 2014; Aiuppa et al., 2006; Moncur 
et al., 2015; Patel et al., 2019; Price and Pichler et al., 2006; Ravenscroft et al., 
2005; Romic et al., 2011; Rowland et al., 2011; Sappa et al., 2014; Sengupta et 
al., 2014; Smedley et al., 1996; Smith et al., 2003; Welch et al., 2000; Zhou et al., 
2017; Schaefer etal., 2016; Appleyard et al., 2006; Carraro et al., 2013; 
Chakraborty et al., 2015; Vega et al., 2017; Harvey et al., 2006; Jia et al., 2014; 
Pi et al.,2018

Collect all existing data on the case study of interest
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Modeling arsenic mobilization and transport in the case study

The Project Planning

- Check if we reproduce the spatial distribution of arsenic
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Aquifer structure

Groundwater 

flow direction

Hydrogeological model
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The case study of the South Lecco Province

Monitored wells

Arsenic [μg/L]

0

120

150

2600

Elevation m.a.s.l.

Isopiezometric lines

Brivio municipality

• Alluvial / Glacial aquifer

• Highest content of arsenic far from hazardous sites

Hazardous sites

No Hydrothermal Sources
No Anthropogenic Sources

Geochemical mobilization 

260 Km2



Interpretation of geochemical data

Gan et al. 2014; Duan et al., 2017; Nickson et al., 2000, McArthur et al., 2001; 
Angelone et al., 2008; Armienta et al., 2001; Bondu et al., 2018; Bundschuh et 
al., 2004; Hafeznezami et al., 2016; Jia et al., 2014; Aiuppa et al., 2006; Moncur 
et al., 2015; Patel et al., 2019; Price and Pichler et al., 2006; Ravenscroft et al., 
2005; Romic et al., 2011; Rowland et al., 2011; Sappa et al., 2014; etc…

pH

As

[μg/L]

7 9

0

100

0

50

As

[μg/L]

0 1000Fe [μg/L]

As

[μg/L]

0

100

0 50
NO3- [mg/L]



Interpretation of geochemical data

0 Km

9 Km

Jia et al., 2014; Postma et al., 2007; Chakraborty et al., 2015

Reduce the scale of observation
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Interpretation of geochemical data

Jia et al., 2014; Postma et al., 2007; Chakraborty et al., 2015

Reduce the scale of observation

• Local increase of dissolved Fe 

and Mn (dissolution of 

iron/manganese phases)
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Interpretation of geochemical data

Jia et al., 2014; Postma et al., 2007; Chakraborty et al., 2015

Reduce the scale of observation

• Local increase of dissolved Fe 

and Mn (dissolution of 

iron/manganese phases)

• Reducing conditions (low content 

of Nitrates)
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Interpretation of geochemical data

Jia et al., 2014; Postma et al., 2007; Chakraborty et al., 2015

Reduce the scale of observation

• Local increase of dissolved Fe 

and Mn (dissolution of 

iron/manganese phases)

• Reducing conditions (low content 

of Nitrates)

• Bacterial activity (high Ammonia)
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Interpretation of geochemical data

Jia et al., 2014; Postma et al., 2007; Chakraborty et al., 2015

Reduce the scale of observation

Reductive Dissolution of Iron-oxides

• Local increase of dissolved Fe 

and Mn (dissolution of 

iron/manganese phases)

• Reducing conditions (low content 

of Nitrates)

• Bacterial activity (high Ammonia)
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Modeling Iron-oxides Reductive Dissolution 

Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 
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From the experimental work of Liu et al. (2001)
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Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 

2

2 3 24 7 6 4CH O FeOOH H HCO H O Fe      

From the experimental work of Liu et al. (2001)
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Kinetic 1: First order for FeOOH
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Modeling Iron-oxides Reductive Dissolution 

Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 
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2 3 24 7 6 4CH O FeOOH H HCO H O Fe      

From the experimental work of Liu et al. (2001)

Kinetic 1: First order for FeOOH
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Modeling Iron-oxides Reductive Dissolution 

Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 
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Release of arsenic



Modeling Iron-oxides Reductive Dissolution 

Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 
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• Thermodynamic equilibrium for all 

mineral phases 

• precipitation of siderite (FeCO3) as 

authigenic phase

Release of arsenic



Modeling Iron-oxides Reductive Dissolution 

Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 
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From the experimental work of Liu et al. (2001)
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Release of arsenic

• Thermodynamic equilibrium for all 

mineral phases 

• precipitation of siderite (FeCO3) as 

authigenic phase



Modeling Iron-oxides Reductive Dissolution 

Assess the design of the reaction network using a batch reactor
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Modeling Iron-oxides Reductive Dissolution 

Assess the design of the reaction network using a batch reactor

3 /As sedAs g g

0.25 /CDoc mg L
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Modeling Iron-oxides Reductive Dissolution 

Geochemical arsenic mobilization modeling: Wallis et al., 2010; Gupta and Joshi, 2017; Sathe et al., 2019; Stollenwerk et 
al., 2007; Jung et al., 2009; Postma et al., 2007 
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2 3 24 7 6 4CH O FeOOH H HCO H O Fe      

From the experimental work of Liu et al. 2001

2
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[ ]

free

FeOOH m

S

CH Od FeOOH
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

• Thermodynamic equilibrium for all 

other mineral phases 

• precipitation of siderite (FeCO3) as 

authigenic phase

Silica 90%

Calcite 6%

Dolomite 3%

Illite 0.8%

Al-oxides 0.1%

Fe-oxides 0.1%

Realistic Composition

Ravazzi et al. (2012)

Realistic GW

EquilibriumUncontaminated 

real GW sample

Partial 

pressure of O2


